- (4) V. Cernak and Z. Herman: Nucleonics, 19, 106 (1961)
- (5) E. Gustafson and E. Lindholm, Ark. Fys., 18, 219 (1960). (6) C. R. Brundle, M. B. Robin, and H. Basch; J. Chem. Phys., 54, 2196 (1970); B. P. Pullen, T. A. Carlson, W. E. Moddeman, et al., J. Chem.
- Phys., **53**, 768 (1970). (7) E. E. Koch and M. Skibowski, *Chem. Phys. Lett.*, **9**, 429 (1971)
- (8) J. D. Morrison and J. C. Traeger, Int. J. Mass Spectrom. Ion Phys., 11,
- 289 (1973). E. Derouane, Memoire de Licence, Université de Liège, 1965, J. P. (9)
- Flamme and R. Locht, unpublished results. (10) M. Krauss, A. L. Wahrhaftig, and H. Eyring, *Rev. Nucl.*, **5**, 241 (1955). (11) H. M. Rosenstock, *Adv. Mass Spectrom.*, **4**, 523 (1968).
- (12) L. P. Hills, M. L. Vestal, and J. H. Futtrell, J. Chem. Phys., 54, 3834 (1971).
- (13) C. E. Klots, J. Phys. Chem., 75, 1526 (1971); (b) Chem. Phys. Lett., 10, 422 (1971).
- (14) W. A. Chupka and J. Berkowitz, J. Chem. Phys., 5H, 4256 (1971). (15) Z. Herman, V. Pacak, and K. Birkinshaw, American Society of Mass Spectroscopy Meeting, 23d Annual Conference, Paper K.9 (1975).

J. P. Flamme, J. Momigny,* H. Wankenne

Laboratoire d'Etude des Etats Ionisés Département de Chimie Générale, University of Liège Liège, Belgium Received July 23, 1975

Electron and Energy Transfer Mechanisms in the Quenching of the Tris(2,2'-bipyridine)ruthenium(II) Luminescence by Cvanide Complexes

Sir:

Efficient quenching of electronically excited coordination compounds can take place by either energy or electron transfer.^{1,2} In the case of the emitting state of tris(2,2'-bipyridine)ruthenium(II), *Ru(bpy)₃²⁺, the following potentially efficient quenching processes may thus be expected:

$$*\operatorname{Ru}(\operatorname{bpy})_{3}^{2+} + Q \xrightarrow{k_{\operatorname{en.t.}}} \operatorname{Ru}(\operatorname{bpy})_{3}^{2+} + *Q \qquad (1)$$

*Ru(bpy)₃²⁺ + Q
$$\xrightarrow{k_{red}}$$
 Ru(bpy)₃⁺ + Q⁺ (2)

*Ru(bpy)₃²⁺ + Q
$$\xrightarrow{\kappa_{ox}}$$
 Ru(bpy)₃³⁺ + Q⁻ (3)

The "thermodynamic" barriers for these reactions may be evaluated knowing that the energy difference between $*Ru(bpy)_3^{2+}$ and $Ru(bpy)_3^{2+}$ is 17.1 kK (2.12 eV),³ and that the reduction potentials of the $*Ru(bpy)_3^{2+}$ -Ru(bpy)₃⁺ and Ru(bpy)₃³⁺-*Ru(bpy)₃²⁺ couples are +0.84 V⁴ and -0.83 V,⁴⁻⁷ respectively, vs. the NHE. Kinetic ("intrinsic") barriers are also known to be important

Figure 1. Stern-Volmer plots for the quenching of the $*Ru(bpy)_3^{2+}$ luminescence by cyanide complexes (see Table I).

in both energy^{1,8} and electron^{6,9,10} transfer reactions. Quenching of $*Ru(bpy)_3^{2+}$ by energy transfer (reaction 1) has been demonstrated for several acceptors.¹ Oxidative quenching (reaction 3) has been shown to occur with various oxidants, 6,11-13 whereas only indirect evidence has so far been obtained for the reductive quenching (reaction 2), using $S_2O_4^{2-}$, $Ru(NH_3)_6^{2+}$, and $Fe(CN)_6^{4-}$ as quenchers.⁴ We describe here the results obtained from the quenching of $*Ru(bpy)_3^{2+}$ by several cyanide complexes which were chosen because they span a wide range of excited-state energies and redox potentials (Table I), and we report definite evidence for the occurrence of reaction 2.

Quenching of the $*Ru(bpy)_3^{2+}$ luminescence (intensity and lifetime) and the photochemical experiments were carried out in aerated aqueous solutions at pH 4, $\mu = 0.50$ (NaCl), and 23°. The Stern-Volmer quenching plots are shown in Figure 1. The quenching rate constants, calculated using $\tau^0 = 400$ ns, are collected in Table I together with some values obtained by other authors.

Solutions containing the highest concentration of $Mo(CN)_8^{4-}$, $Os(CN)_6^{4-}$, and $Ni(CN)_4^{2-}$ used in the quenching experiments were irradiated in a conventional photochemical apparatus with 464-nm light. For the $Ru(bpy)_{3}^{2+}-Mo(CN)_{8}^{4-}$ system, irradiation caused an increase in pH while the absorption spectrum decreased at λ <255 nm and increased at about 270 and 390 nm, indicat-

Table I. Quenching of $*Ru(bpy)_3^{2+}$ by Various Cyanide Complexes^a

Quencher Q	$E(*Q), ^{b} kK$	$E^{0}(Q^{+}/Q),^{c} V$	$E^0(Q/Q^-), ^c V$	$k_{q}, d M^{-1} s^{-1}$	Reaction ^e
$M_0(CN)_8^{4-}$	19.6 ^f	+0,738	$(<-1.8)^{h}$	3.4×10^{8}	2
$Cr(CN)_{6}^{3-}$	12.4^{i}	—	-1.28^{j}	7.5×10^{8} k	1
$Fe(CN)_6^{4-}$	23.71	+0.36 ^j	$(<-1.7)^{t}$	$3.3 \times 10^{9} m$	2
$Fe(CN)_6^{3-}$	23.51	$(> + 0.75)^n$	+0.36	6.5×10^{9} °	3
$Co(CN)_6^{3-}$	26.0 ^p	`	-0.83^{j}	<106	_
$Os(CN)_6^{4-}$	47/	$+0.75^{j}$	_	1.2×10^{9}	2
$Ni(CN)_4^{2-}$	234	$(>+1.0)^n$	-1.35	5.6×10^{9}	1 or 2
$Pd(CN)_{4}^{2-}$	$22.7^{i.s}$	$(> +1.0)^n$	$(< -1.8)^{h}$	<106	_
$Pt(CN)_4^{2-}$	23.0 ^{<i>i</i>,s}		· · · · · · · · · · · · · · · · · · ·	<106	

 ${}^{a}E(*Ru(bpy)_{3}^{2+}) = 17.1 \text{ kK}, E^{0}(*Ru(bpy)_{3}^{2+}-Ru(bpy)_{3}^{+}) = +0.84 \text{ V}, E^{0}(Ru(bpy)_{3}^{3+}-*Ru(bpy)_{3}^{2+}) = -0.83 \text{ V}.$ b Lowest energy absorption of the term of te tion feature, unless otherwise noted. ^c Reduction potential at 25° and $\mu = 0$, unless otherwise noted. ^d 23°, $\mu = 0.50$. ^e Reaction responsible for the quenching (see text). ^f From ref 14. ^g "Stability Constants of Metal-Ion Complexes", Chem. Soc., Spec. Publ., No. 17 (1964). ^h Electroinactive up to the indicated potential at the mercury electrode in deaerated 0.50 M NaCl solution, 25°. ^l P. D. Fleischauer and P. Fleischauer, Chem. Rev., 70, 199 (1970). ¹ D. A. Buckingham and A. M. Sargeson in "Chelating Agents and Metal Chelates", F. P. Dwyer and D. P. Mellor, Ed., Academic Press, New York, N.Y., 1964, p 237. * F. Bolletta, M. Maestri, and L. Moggi, J. Phys. Chem., 77, 861 (1973). / From ref 18. 77 This value is in agreement with that reported in ref 4. " Electroinactive up to the indicated potential at the platinum electrode in deaerated 0.50 M NaCl solution, 25°. ° 25°, ref 4. P H. Kataoka, Bull. Chem. Soc. Jpn., 46, 2078 (1973); K. W. Hipps and G. A. Crosby, Inorg. Chem., 13, 1543 (1974). 4 From ref 14 and 25. ' Half-wave potential vs. the SCE, from A. A. Vlček, Collect. Czech. Chem. Commun., 22, 948 (1957). ' Energy of the lowest excited state from emission spectra. ¹ A. N. Frumkin, Trans. Faraday Soc., 55, 156 (1959).

ing the formation of $Mo(CN)_8^{3-.14}$ The very high optical density of the solution prevented quantitative measurements. The quantum yield of proton uptake, $\Phi(H^+)$, increased with increasing $Mo(CN)_8^{4-}$ concentration. The plot of $1/\Phi(H^+)$ vs. $1/[Mo(CN)_8^{4-}]$ was linear with $\Phi(H^+)_{lim} = 0.05 \pm 0.01$ and $K_{SV} = 170 \pm 50 \text{ M}^{-1}$, in agreement with the value obtained from the quenching experiments (140 M⁻¹, Figure 1). The reaction was not suppressed by 0.1 M HCN, which prevented CN⁻ release from directly excited $M_0(CN)_8^{4-}$ (see also ref 15). As the quantum yield of the direct $Mo(CN)_8^{4-}$ aquation was 0.8 under our experimental conditions, the quenching of $*Ru(bpy)_3^{2+}$ cannot occur by energy transfer to a reactive $Mo(CN)_8^{4-}$ level.¹⁶ For the $Ru(bpy)_3^{2+}$ -Os(CN)₆⁴⁻ system, irradiation caused an increase in pH and the appearance of four bands at 306, 330, 405, and 414 nm, which are characteristic of $Os(CN)_6^{3-.18}$ For short irradiation periods, the apparent quantum yield of $Os(CN)_6^{3-}$ formation was of the order of 0.005. After long irradiation periods, both the pH and spectrum reached constant values. No spectral change was ever observed in the 450-nm region where $Ru(bpy)_3^{2+}$ exhibits a very intense absorption band. The final $Os(CN)_6^{3-}$ concentration was $\sim 1 \times 10^{-4}$ M, i.e., $\sim 2.5\%$ of the initial $Os(CN)_6^{4-}$ concentration and ~150% of the Ru(bpy)_3^{2+} concentration. For the $Ru(bpy)_3^{2+}-Ni(CN)_4^{2-}$ system, neither the pH nor the spectrum showed any change upon irradiation.

The results obtained with $Mo(CN)_8^{4-}$ and $Os(CN)_6^{4-}$ show that a reductive quenching (reaction 2) takes place and that a fraction of $Mo(CN)_8^{3-}$ and $Os(CN)_6^{3-}$ escapes the back-reduction by $Ru(bpy)_3^+$. The quantum yield values show that this fraction is very small. As no $Ru(bpy)_3^{2+}$ is lost, an alternative reoxidation path for $Ru(bpy)_3^+$ must be present. The most probable is the reaction with O_2 , whose rate constant is reported to be 1.8 X $10^9 \text{ M}^{-1} \text{ s}^{-1}$.¹⁹ The observed H⁺ uptake is presumably due to a subsequent reaction of O_2^- with H^+ , ²⁰ although direct oxidation of $Ru(bpy)_3^+$ by H^+ cannot be ruled out. For both $Mo(CN)_8^{4-}$ and $Os(CN)_6^{4-}$, quenching by energy transfer is not thermodynamically favorable (Table I) and oxidative quenching is rather implausible, so that the only important quenching mechanism is presumably reaction $2.^{22}$ For the same reasons, there is little doubt that the only quenching mechanism for $Fe(CN)_6^{4-}$ is reaction 2 (see also ref 4).

The data gathered in Table I merit some further comments. With $Cr(CN)_6^{3-}$, oxidative quenching is not thermodynamically favorable, while reductive quenching is presumably even less favorable since it should lead to a Cr(IV)cyanide complex. Energy transfer appears thus to be the only possible quenching mechanism, as already shown by sensitized luminescence experiments.²⁴ With $Fe(CN)_6^{3-1}$ energy transfer is not allowed and reductive quenching is completely implausible, so that only oxidative quenching is expected to occur. The lack of quenching by $Co(CN)_6^3$ can be explained since (i) energy transfer is not allowed, (ii) reductive quenching is implausible because it would lead to a Co(IV) complex, and (iii) oxidative quenching, even if thermodynamically not unfavorable, is expected to involve a high intrinsic barrier.^{9,10} In the case of $Ni(CN)_4^{2-}$, oxidative quenching does not seem thermodynamically favorable, whereas reductive quenching may be possible since the electroinactivity up to +1.0 V could be due to "kinetic" factors. On the other hand, quenching by energy transfer to the lowest $Ni(CN)_4^{2-}$ triplet cannot be ruled out since the lowest energy shoulder in the absorption spectrum (~23 kK) has been attributed to either the second¹⁴ or the third²⁵ excited triplet. The complex is photochemically inert²⁶ and thus the observed lack of sensitized aquation does not rule out energy transfer. The strong distortion²⁷ of the d-d excited states of this complex may be a further argument in favor of an energy transfer mechanism. Finally, the lack of quenching by $Pd(CN)_4^{2-}$ and $Pt(CN)_4^{2-}$, for which energy transfer can safely be ruled out, indicates that both reductive and oxidative quenching cannot take place because of unfavorable thermodynamic and/or intrinsic barriers.

Acknowledgments. We thank Drs. S. Roffia and M. Ciano for the electrochemical measurements and the National Research Council of Italy for financial support.

References and Notes

- V. Balzani, L. Moggi, M. F. Manfrin, F. Bolletta, and G. S. Laurence, Coord. Chem. Rev., 15, 321 (1975).
 V. L. Ermolaev, E. G. Sveshnikova, and T. A. Shakhverdov. Russ.
- Chem. Rev., 44, 26 (1975), translated from Usp. Khlm., 44, 48 (1975).
- R. J. Watts and G. A. Crosby, *J. Am. Chem. Soc.*, **93**, 3184 (1971).
 C. Creutz and N. Sutin, *Inorg. Chem.*, in press.
 C. R. Bock, T. J. Meyer, and D. G. Whitten, *J. Am. Chem. Soc.*, **97**,
- 2909 (1975).
- (6) G. Navon and N. Sutin, Inorg. Chem., 13, 2159 (1974). (7) C.-T. Lin and N. Sutin, J. Phys. Chem., in press
- (8) F. Bolletta, M. Maestri, L. Moggi, and V. Balzani, J. Am. Chem. Soc., 95, 7864 (1973).
- (9) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions", Wiley, New York, N.Y., 1967, p 454.
 N. Sutin, Acc. Chem. Res., 1, 225 (1968).

 - (11) H. D. Gafney and A. W. Adamson, J. Am. Chem. Soc., 94, 8238 (1972).
 (12) C. R. Bock, T. J. Meyer, and D. G. Whitten, J. Am. Chem. Soc., 98,
 - 4710 (1974).

 - (13) G. S. Laurence and V. Balzani, *Inorg. Chem.*, 13, 2976 (1974).
 (14) J. R. Perumareddi, A. D. Liehr, and A. W. Adamson, *J. Am. Chem. Soc.*, 85, 249 (1963).

 - (15) V. Balzani, M. F. Manfrin, and L. Moggi, *Inorg. Chem.*, **8**, 47 (1969). (16) A referee has pointed out that direct excitation of $Mo(CN)_8^{4-}$ prod produces the reactive excited state in a different solvation environment from the excited state produced by energy transfer from $*Ru(bpy)_3^{2+}$, and that this *could* account for the different quantum yields.¹⁷ This argument would require that the excited-state lifetime be shorter than the encounter lifetime. Unfortunately, the lifetime of the reactive state of $Mo(CN)_8^{4-}$ is unknown.
 - (17) See also J. F. Endicott, G. J. Ferraudi, and J. R. Barber, J. Am. Chem. Soc., 97, 219 (1975).
- (18) J. J. Alexander and H. B. Gray, *J. Am. Chem. Soc.*, **90**, 4260 (1968).
 (19) J. H. Baxendale and M. Fiti, *J. Chem. Soc.*, *Dalton Trans.*, 1995 (1972).
 (20) The pK_a of HO₂: is about 4.8.²¹

- (21) J. Rabani and S. O. Willson, J. Phys. Chem., 73, 3736 (1969); D. Behar, G. Czapski, L. M. Dorfman, J. Rabani, and M. A. Schwarz, J. Phys. Chem., 74, 3209 (1970).
- (22) We think that a reductive quenching could also explain the lack of sen-sitized aquation of Mo(CN)₈⁴⁻ in the quenching of the blacetyl triplets by the complex.²³
- (23) R. D. Wilson, V. S. Sastri, and C. H. Langford, Can. J. Chem., 49, 679 (1971)
- (24) N. Sabbatini and V. Balzani, J. Am. Chem. Soc., 94, 7587 (1972); N. Sabbatini, M. A. Scandola, and V. Balzani, J. Phys. Chem., 78, 541 (1974).
- (25) W. R. Mason and H. B. Gray, J. Am. Chem. Soc., 90, 5721 (1968)
- (26) L. Moggi, F. Bolletta, V. Balzani, and F. Scandola, J. Inorg. Nucl. Chem., 28, 2589 (1966).
- (27) C. J. Ballhausen, N. Bjerrum, R. Dingle, K. Eriks, and C. R. Hare, Inorg. Chem., 4, 514 (1965).

A. Juris, M. T. Gandolfi, M. F. Manfrin, V. Balzani* Istituto Chimico "G. Ciamician" dell'Università Bologna, Italy Received October 31, 1975

Intramolecular 1,1-Cycloaddition Reactions of Nitrile Ylides¹

Sir:

Nitrile ylides are a long known and thoroughly investigated class of 1,3-dipoles.²⁻⁴ Access to this group of dipoles can be realized by (a) treatment of imidoyl halides with base,⁵ (b) thermal or photochemical elimination of phosphoric acid ester from 4,5-dihydro-1,3,5-oxazaphospholes,6 and (c) photolysis of 1-azirines.^{7,8} The greatest opportunity for structural variation is offered by the latter route. Among the possible resonance forms of a nitrile ylide, a car-

Journal of the American Chemical Society / 98:4 / February 18, 1976